Synergistic impacts of global warming and thermohaline circulation collapse on amphibians

  • 1.

    Settele, J. et al. in Climate Change 2014 Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects. https://doi.org/10.1017/CBO9781107415379.009 (2015).

  • 2.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 3.

    Li, Y., Cohen, J. M. & Rohr, J. R. Review and synthesis of the effects of climate change on amphibians. Integr. Zool. 8, 145–161 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 4.

    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 5.

    IUCN. IUCN Red List of Threatened Species. Version 2019-3. http://www.iucnredlist.org (IUCN, 2019).

  • 6.

    Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 7.

    Warren, R. et al. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat. Clim. Chang. 3, 678–682 (2013).

    Article 

    Google Scholar
     

  • 8.

    Kiesecker, J. M. Global stressors and the global decline of amphibians: tipping the stress immunocompetency axis. Ecol. Res. 26, 897–908 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 9.

    Collins, J. P. & Storfer, A. Global amphibian declines: sorting the hypotheses. Diversity Distrib. 9, 89–98 (2003).

    Article 

    Google Scholar
     

  • 10.

    Stebbins, R. C. & Cohen, N. W. A Natural History of Amphibians (Princeton University Press, 1997).

  • 11.

    Wells, K. D. The Ecology and Behavior of Amphibians (University of Chicago Press, 2010).

  • 12.

    Flato, G. et al. in Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) Vol. 9781107057, 741–866 (Cambridge University Press, 2013).

  • 13.

    Kriegler, E., Hall, J. W., Held, H., Dawson, R. & Schellnhuber, H. J. Imprecise probability assessment of tipping points in the climate system. Proc. Natl Acad. Sci. USA 106, 5041–5046 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 14.

    Lenton, T. M. et al. Climate tipping points—too risky to bet against. Nature 575, 592–595 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 15.

    Collins, M. et al. in Climate Change 2013—The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Vol. 9781107057, 1029–1136 (2013).

  • 16.

    Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–93 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 17.

    Collins, M. & Sutherland, M. Extremes, Abrupt Changes and Managing Risks. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. https://report.ipcc.ch/srocc/pdf/SROCC_FinalDraft_Chapter6.pdf (2019).

  • 18.

    Sgubin, G., Swingedouw, D., Drijfhout, S., Mary, Y. & Bennabi, A. Abrupt cooling over the North Atlantic in modern climate models. Nat. Commun. 8, 14375 (2017).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • 19.

    Vellinga, M. & Wood, R. A. Global climatic impacts of a collapse of the atlantic thermohaline circulation. Clim. Change 54, 251–267 (2002).

    Article 

    Google Scholar
     

  • 20.

    Jackson, L. C. et al. Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Clim. Dyn. 45, 3299–3316 (2015).

    Article 

    Google Scholar
     

  • 21.

    Swingedouw, D. Oceanography: fresh news from the Atlantic. Nat. Clim. Change 5, 411–412 (2015).

    Article 

    Google Scholar
     

  • 22.

    Gregory, J. M. et al. A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett. 32, 1–5 (2005).

    Article 
    CAS 

    Google Scholar
     

  • 23.

    Thornalley, D. J. R. et al. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature 556, 227–230 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 24.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorological Soc. 93, 485–498 (2012).

    Article 

    Google Scholar
     

  • 25.

    Cheng, W. et al. Atlantic meridional overturning circulation (AMOC) in CMIP5 models: RCP and historical simulations. J. Clim. 26, 7187–7197 (2013).

    Article 

    Google Scholar
     

  • 26.

    Jourdain, N. et al. A protocol for calculating basal melt rates in the ISMIP6 Antarctic ice sheet projections. Cryosph. Discuss. 1–33, https://doi.org/10.5194/tc-2019-277 (2019).

  • 27.

    Swingedouw, D. et al. Decadal fingerprints of freshwater discharge around Greenland in a multi-model ensemble. Clim. Dyn. 41, 695–720 (2013).

    Article 

    Google Scholar
     

  • 28.

    Anthoff, D., Estrada, F. & Tol, R. S. J. Shutting down the thermohaline circulation. Am. Econ. Rev. 106, 602–606 (2016).

    Article 

    Google Scholar
     

  • 29.

    Defrance, D. et al. Consequences of rapid ice sheet melting on the Sahelian population vulnerability. Proc. Natl Acad. Sci. USA 114, 6533–6538 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 30.

    Ritchie, P. D. L. et al. Shifts in national land use and food production in Great Britain after a climate tipping point. Nat. Food 1, 76–83 (2020).

    Article 

    Google Scholar
     

  • 31.

    Kuhlbrodt, T. et al. An integrated assessment of changes in the thermohaline circulation. Clim. Change 96, 489–537 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Osman, M. B. et al. Industrial-era decline in subarctic Atlantic productivity. Nature 569, 551–555 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 33.

    Schmittner, A. Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation. Nature 434, 628–633 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 34.

    Schenk, F. et al. Warm summers during the Younger Dryas cold reversal. Nat. Commun. 9, 1–13 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Gunderson, L. H. Ecological resilience—in theory and application. Annu. Rev. Ecol. Syst. 31, 425–439 (2000).

    Article 

    Google Scholar
     

  • 36.

    Lockwood, J. L. & McKinney, M. L. Biotic Homogenization (Kluwer Academic/Plenum Publishers, 2001).

  • 37.

    Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Araújo, M. B., Thuiller, W. & Pearson, R. G. Climate warming and the decline of amphibians and reptiles in Europe. J. Biogeogr. 33, 1712–1728 (2006).

    Article 

    Google Scholar
     

  • 39.

    Lemoine, D. & Traeger, C. P. Economics of tipping the climate dominoes. Nat. Clim. Chang. 6, 514–519 (2016).

    Article 

    Google Scholar
     

  • 40.

    Stern, N. The structure of economic modeling of the potential impacts of climate change: grafting gross underestimation of risk onto already narrow science models. J. Econ. Lit. 51, 838–859 (2013).

    Article 

    Google Scholar
     

  • 41.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar
     

  • 42.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article 

    Google Scholar
     

  • 43.

    Zurell, D., Graham, C. H., Gallien, L., Thuiller, W. & Zimmermann, N. E. Long-distance migratory birds threatened by multiple independent risks from global change. Nat. Clim. Chang. 8, 992–996 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 44.

    Munguía, M., Rahbek, C., Rangel, T. F., Diniz-Filho, J. A. F. & Araújo, M. B. Equilibrium of global amphibian species distributions with climate. PLoS ONE 7, e34420 (2012).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 45.

    Hof, C., Araújo, M. B., Jetz, W. & Rahbek, C. Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature 480, 516–519 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 46.

    Hof, C. et al. Bioenergy cropland expansion may offset positive effects of climate change mitigation for global vertebrate diversity. Proc. Natl Acad. Sci. USA 115, 13294–13299 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 47.

    Biber, M. F., Voskamp, A., Niamir, A., Hickler, T. & Hof, C. A comparison of macroecological and stacked species distribution models to predict future global terrestrial vertebrate richness. J. Biogeogr. https://doi.org/10.1111/jbi.13696 (2019).

  • 48.

    Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N. & Zimmermann, N. E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 10, 1446 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 49.

    Fourcade, Y. Comparing species distributions modelled from occurrence data and from expert-based range maps. Implication for predicting range shifts with climate change. Ecol. Inform. 36, 8–14 (2016).

    Article 

    Google Scholar
     

  • 50.

    Alhajeri, B. H. & Fourcade, Y. High correlation between species-level environmental data estimates extracted from IUCN expert range maps and from GBIF occurrence data. J. Biogeogr. 46, 1329–1341 (2019).


    Google Scholar
     

  • 51.

    Ficetola, G. F. et al. An evaluation of the robustness of global amphibian range maps. J. Biogeogr. https://doi.org/10.1111/jbi.12206 (2014).

  • 52.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).

    Article 

    Google Scholar
     

  • 53.

    Araújo, M. B. et al. Quaternary climate changes explain diversity among reptiles and amphibians. Ecography 31, 8–15 (2008).

    Article 

    Google Scholar
     

  • 54.

    Ochoa-Ochoa, L. M., Mejía-Domínguez, N. R., Velasco, J. A., Marske, K. A. & Rahbek, C. Amphibian functional diversity is related to high annual precipitation and low precipitation seasonality in the New World. Glob. Ecol. Biogeogr. 28, 1219–1229 (2019).

    Article 

    Google Scholar
     

  • 55.

    Oliveira, B. F., Sheffers, B. R. & Costa, G. C. Decoupled erosion of amphibians’ phylogenetic and functional diversity due to extinction. Glob. Ecol. Biogeogr. 29, 309–319 (2020).

    Article 

    Google Scholar
     

  • 56.

    Naimi, B. & Araújo, M. B. Sdm: a reproducible and extensible R platform for species distribution modelling. Ecography https://doi.org/10.1111/ecog.01881 (2016).

  • 57.

    Di Cola, V. et al. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography https://doi.org/10.1111/ecog.02671 (2017).

  • 58.

    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. https://doi.org/10.1017/S0376892997000088 (1997).

  • 59.

    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. https://doi.org/10.1111/j.1365-2664.2006.01214.x (2006).

  • 60.

    Peterson, A. T. et al. Ecological Niches and Geographic Distributions (MPB-49). Ecological Niches and Geographic Distributions (MPB-49) https://doi.org/10.23943/princeton/9780691136868.001.0001 (Princeton University Press, 2011).

  • 61.

    Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Modell. https://doi.org/10.1016/j.ecolmodel.2011.02.011 (2011).

  • 62.

    Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: with Applications in R. Habitat Suitability and Distribution Models: with Applications in R. https://doi.org/10.1017/9781139028271 (2017).

  • 63.

    Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography https://doi.org/10.1111/j.0906-7590.2005.03957.x (2005).

  • 64.

    Diniz-Filho, J. A. F. et al. Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography https://doi.org/10.1111/j.1600-0587.2009.06196.x (2009).

  • 65.

    Velasco, J. et al. Synergistic impacts of global warming and thermohaline circulation collapse on amphibians. https://doi.org/10.6084/m9.figshare.13280951.v1 (2020).